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Introduction
As blend-to-spec products, fuels can vary greatly in 
composition depending on crude oil source, refining 
techniques, regulatory requirements as well as the use of 
blending components like oxygenates. Furthermore, with the 
shift of refining capacity, fuel exports have increased and 
today, fuel is truly a global commodity. As a consequence, the 
demand for accurate screening of fuels on-site has increased. 

Infrared spectroscopy is a popular tool to obtain information 
about the molecular composition of an unknown fuel. Using the 
IR spectrum of the fingerprint region between 600-1200 cm-1, it 
is possible to determine the composition and concentration of 
aromatics, oxygenates and olefines in gasoline samples. While 
the information about the gasoline composition is important for 
the regulatory compliance (aromatic content, oxygenate content 
etc.), the wealth of information in the IR spectrum allows for the 
use of chemometric models to predict properties of the fuel. 
The most prominent examples of such properties are octane 
numbers (RON & MON) and distillation points.

To predict a property, a database of fuels with reference values 
and the corresponding IR spectra have to be collected. After 
building the model, the IR spectrum of an unknown sample can 
be used together with the model to predict its properties. Hence, 
after building a model, the application of expensive and time-
consuming reference methods can be avoided. This makes the 
use of chemometric models particularly attractive for screening 
and mobile lab applications where a quick measurement can 
provide a very detailed picture of the composition and the 
properties of the fuel.

A typical gasoline displays a very rich spectrum in the mid-infrared 
(MIR) spectral range. Here the concentration and composition of 
aromatics and oxygenates and concentration of olefins can be 
accurately determined. These parameters also affect properties 
such as RON and MON and allow these properties to be predicted 
using chemometric models. However, the MIR spectrum provides 
limited information of the composition of the fuel’s backbone, 
i.e. the alkanes. This information is mainly contained in the 
CH stretch vibrations around 3000 cm-1 and to some extent in 
the CH2 and CH3 bending vibrations around 1300-1500 cm-1. 
However, as the absorption of the stretch vibration is very strong, 
they saturate even for very short path lengths of 20 µm in IR 
spectroscopy. Hence, the stretch vibration, and thus the major 
source of information about the alkanes, cannot be used for 
chemometric analysis. 

The lack of information on the alkanes is problematic as they 
typically make up as much as 2/3 of the fuel. The alkanes strongly 
affect the property which is to be predicted (i.e. RON) but as they 
are not clearly visible in MIR, they are to a large extent implicitly 
hidden in the models. For this reason, it is common to develop 
different MIR models for different geographical regions, fuel types 
or frequently update the models as new fuels are encountered. 

MIR+NIR FTIR spectroscopy  
for property prediction
A path to improve the accuracy and applicable range of the 
chemometric models of fuels would thus require additional 
information about the fuels backbone. A way to increase the 
information about the backbone of fuels is to extend the spectral 
range to the near infrared (NIR) range where the so-called 
combination bands show absorption. In the range of 4000-4500 cm-1 

the combination of the CH2/CH3 bending and the CH stretch 
vibration give rise to absorption. By exploiting this spectral range, 
the molecular sensitivity of the CH stretch vibration to the alkane 
distribution can be obtained indirectly and can be combined with 
the information on the aromatics, oxygenates and olefines from 
MIR spectral range. 

To illustrate the additional information offered by the extended 
spectral range, figure 1 shows two fuels with a RON of 95.5. The 
MIR spectral range shows that fuel 1 has higher olefine content, 
fuel 2 has somewhat higher aromatic content and both fuels have 
been blended with about 10% MTBE. Additional ASTM D6839 
(i.e. PONA) analysis showed that fuel 1 had 8 % C5 paraffines, 
whereas fuel 2 had 21 %. This difference clearly affects the 
octane number of the fuel but cannot be detected in the MIR 
spectral range. In the NIR spectral range, shown in figure 2, the 
significant difference in C5 distribution is reflected in the spectral 
differences around 4050 cm-1. 

The extension of the spectral range to cover the NIR spectral 
range thus seem to offer advantages in the information on the 
fuels backbone, which could improve stability and accuracy of 
chemometric models.

However, the combination bands in NIR spectral range are 
significantly weaker than the fundamental vibrations in the MIR 
spectral range. To obtain a spectrum where the fundamental 
bands and the combination bands are both measured with similar 
accuracy, eraspec employs measurement cells with different 
pathlengths. The fuel spectrum is measured in the MIR region 
(600-1500 cm-1) through a 20 µm transmission cell and in the NIR 
region (4000-4500 cm-1) through a 500 µm cell. The spectra are 
then normalized to the individual cell pathlength and background 
corrected. To harness the entire spectral information, a partial 
least squares (PLS) model was applied to the combined spectra. 

Sample set
To develop a model for the MIR+NIR PLS, 932 gasolines from 88 
countries were collected and analyzed with ASTM D2699 (RON), 
ASTM D2700 (MON), D86 (Distillation) as well as ASTM D6839 
(PONA). The spectra of the fuels were measured with eralytics’ 
eraspec with its MIR+NIR module. For each parameter, a PLS 
model based on the combined spectral information in MIR and 
NIR was developed. 
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Figure 1. MIR spectra of selected fuels. Fuel 1 (blue solid) and fuel 2 (red dash) both have a RON of 95.5.



MIR+NIR model properties
Figure 3 shows the calibration model for RON. The number of 
samples, the standard error of calibration (SEC) and adjusted 
R2 coefficient is shown in table 1. The spectral data from the 
MIR spectral range was used to develop a standard Multi Linear 
Regression (MLR) model using the respective peaks used in 
eraspec’s gasoline module. The respective SEC and R2 for RON 
for the MIR model is shown in table 1. 

The results for the predicted properties are summarized in table 1. 

Table 1. PLS model based on the combined MIR+NIR spectral range. In 
addition, the MLR model based on the MIR spectrum only for RON is shown. 

The spectral data from the MIR range was also used to generate 
a PLS model. This model had SEC somewhere between the MIR 
and the MIR+NIR models. However, the PLS model using only 
the MIR range proved to be very difficult to transfer to different 
units due to the strong dependence on the CH2 and CH3 bend 

region. To obtain a transferable model (i.e. reproducible results 
over many instruments for the same sample), the number of 
PLS components had to be reduced to such an extent that the 
PLS model produced a SECs similar to the MLR model. Hence, 
the PLS model based on only the MIR spectral range was not 
pursued further.  

Model validation
Full range spectral models like PLS are prone to overfitting and 
poor reproducibility when transferred to different instruments. It 
is thus important to validate the model using external validation 
samples to confirm that the model can be transferred to 
different instruments without losing its precision. To validate the 
robustness of the model, validations sets were collected, and the 
samples were measured on units not used to develop the model.

To validate the model, external validation sets were collected, and 
the samples were analyzed with ASTM D2699. The first validation 
set comprised 563 gasolines collected at refineries and gas 
stations in all regions of mainland China. The second validation 
set comprised 327 gasolines collected from 8 refineries in India. 
All validation samples were measured locally and on instruments 
not involved in the development of the PLS model. 

To gauge the models performance on the external validation sets, 
the standard error of prediction (SEP) and average error between 
predicted value and actual value (Δ) was used. The summary of 
the external validation sets are shown in table 2. 

Table 2. Standard error of Prediction (SEP) and the average error (Δ) for 
MIR+NIR and MIR models for the two external validation set. 

Both external validation scenarios show that the MIR+NIR PLS 
model produces good results on unknown samples, i.e. the SEP 
is close to the SEC. The close to zero average difference (Δ) of 
predicted and actual RON for both sample sets shows that the 
model can be transferred to different instruments and produce 
consistent results. Furthermore, it has been shown that for both 
scenarios the MIR+NIR PLS model outperforms the MIR MLR 
model by a factor of 2. 

Expanding the model
The second validation set showed a somewhat larger deviation 
between SEC of the model (0.52) and SEP (0.78). This is 
mostly related to the high-octane samples which were not well 
represented by the model. A number of these samples showed 
elevated concentrations of mesitylene far outside those found in 
the calibration model. These samples were flagged based on the 
elevated Mahalanobis distance. To improve the accuracy of the 
model, such samples should be added to the model to expand it 
to improve future analysis of such samples.  

The 327 samples from the Indian validation set was used to train 
(i.e. expand) the model. Then the performance of the validation 
set was recalculated. 

Table 2. Standard error of Prediction (SEP) and the average error (Δ) for 
MIR+NIR and MIR models for the 2nd external validation set before and after 
training with the local samples. 

The updated model provides better results when applied to the 
second validation set. The MIR+NIR PLS model showed SEP of 
0.48 RON, which is actually better than the SEC of the original 
calibration model. 

This illustrates that even a very large factory model can be 
improved by adding local samples and expanding the model. It 
is possible to do such model updates directly on the eraspec fuel 
analyzer without the need for a PC or other proprietary software. 

Expanding the MIR MLR model also leads to an improvement. 
However, the SEP is 0.91 RON and still a factor 2 worse than that 
of the MIR+NIR PLS model. Note that the untrained MIR+NIR PLS 
model outperforms the trained MIR MLR model (SEP = 0.78 vs 
SEC = 0.91). Even after training the MIR model with over 300 local 
samples, it proved to be inferior to the “factory” MIR+NIR PLS model. 

Conclusion: 
A MIR+NIR PLS model has been developed for eralytics eraspec 
fuel analyzer to predict properties of gasolines based on a global 
calibration set containing more than 930 fuel samples. The SEC 
of the MIR+NIR PLS model was found to be about a factor of 2 
better than a model employing only the MIR spectral range. 

External validation with instruments not used to develop the 
model showed the robustness of the model and validated the 
employed calibration transfer routines. In two different validation 
scenarios, the improvement in accuracy using the additional 
information from the NIR part of the spectrum was found to be 
a factor 2, i.e. the advantage seen in SEC is maintained for the 
external validation. 

The successful application of the global MIR+NIR PLS model to 
the two external validation set demonstrates that a stable global 
model can be successfully developed. As this model covers a very 
wide scope of fuels, it is less prone to model updates. However, if 
fuels which are outside the calibration model are encountered, the 
PLS model can be re-trained directly on the instrument without 
any external software. 
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                                          MIR+NIR PLS	  MIR MLR

 n SEC R2 SEC R2

RON 932 0.52 0.95 1.09 0.74

MON 675 0.50 0.93   

ARO 914 1.09 0.97   

OLE 906 0.87 0.96   

IBP 668 1.36 0.88   

T10 667 1.25 0.87   

T50 664 2.54 0.92   

T90 667 4.04 0.79   

FBP 669 7.12 0.45

                                                          MIR+NIR PLS       MIR MLR

Property Set n SEP Δ SEP Δ

RON 1 563 0.57 -0.02 0.98 0.10

RON 2 327 0.78 0.07  1.68  -0.24

                                                           MIR+NIR PLS      MIR MLR

Property Set n SEP Δ SEP Δ

RON 2 327 0.78 0.07 1.68 -0.24

RON 2 -self-trained 327 0.48 0.04  0.91  0.04

Figure 2. NIR spectra of selected fuels. Fuel 1 (blue solid) and fuel 2 (red dash) both have a RON of 95.5.

Figure 3. PLS model based on the combined MIR+NIR spectral range for RON using 932 samples. 

ANALYTICAL INSTRUMENTATION

 Dr. Niklas Christensson 
(Managing Director) Eralytics 

Address: Autokaderstrasse 29/Building 
4A, 1210 Vienna, Austria

Tel: +43 1 890 50 33 – 0

Email: christensson@eralytics.com 

Web: www.eralytics.com


